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1 Proof of the Geometric Hahn-Banach Theorem

1.1 Gauges and the real geometric Hahn-Banach theorem

Theorem 1.1 (geometric Hahn-Banach). Let V be a real normed vector space with A,B ⊆
V convex, nonempty and disjoint. Also assume A is open. Then there exists a closed affine
hyperplane separating A and B.

Before we prove this, we need a bit of background.

Definition 1.1. Let C ⊆ V be convex and open such that 0 ∈ C. Define the gauge of C
as

p(x) = inf{t > 0 : x/t ∈ C}.

Lemma 1.1. The gauge of C satisfies the following properties:

1. p(λx) = λp(x) for λ > 0 and x ∈ V

2. p(x+ y) ≤ p(x) + p(y) for x, y ∈ V

3. there exists M > 0 such that p(x) ≤ M‖x‖ for all x ∈ V ( =⇒ p is continuous at
0).

4. C = {x ∈ V : p(x) < 1}

Proof. (i) is clear.
(iii) Let r > 0 be such that {x : ‖x‖ ≤ r} ⊆ C. Then for all x with ‖x‖ = 1, rx ∈ C,

so p(x) ≤ 1/r. So p(x) ≤ ‖x‖/r for all x ∈ V .
(iv) We first show C ⊆ {x : p(x) < 1}. If x ∈ C, then (1 + ε)x ∈ C for ε small. So

p(x) ≤ 1/(1 + ε) < 1. On the other hand, if p(x) < 1, then x/t ∈ C for some 0 < t < 1. So
x = t(x/t) + (1− t)0 ∈ C (by convexity of C).

(ii) Let x, y ∈ V and ε > 0. Then x/(p(x) + ε), y/(p(y) + ε) ∈ C, and their convex
combination

t
x

p(x) + ε
+ (1− t) y

p(y) + ε
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is also in C for 0 ≤ t ≤ 1. Take t = (p(x) + ε)/(p(x) + p(y) + 2ε). So

x+ y

p(x) + p(y) + 2ε
∈ C

which gives us that p(x+ y) < p(x) + p(y) + 2ε. So p is subadditive.

Lemma 1.2. Let C ⊆ V be open, convex, and nonempty, and let x0 /∈ C. Then there
exists a continuous linear form f : V → R such that f(x) < f(x0) for all x ∈ C. In
particular, the closed affine hyperplane H = f−1(f(x0)) separates x0 and C.

Proof. By translation, we may assume that 0 ∈ C. Let g : Rx0 → R send tx0 7→ t. Then
g(tx0) ≤ p(tx0) for any t ∈ R, where p is the gauge of C; indeed, for t ≤ 0, this is ok,
and if t > 0, this is also ok, as p(x0) ≥ 1. By the analytic version of the Hahn-Banach
theorem, g extends to a linear form f : V → R such that f(x0) = 1 and f(x) ≤ p(x) for
any x ∈ V . In particular, f(x) < 1 = f(x0) for x ∈ C. The function f is continuous as
f(x) ≤ p(x) ≤M‖x‖ for all x ∈ V .

We are now ready to prove the geometric Hahn-Banach theorem.

Proof. Let C = A − B = {x − y : x ∈ A, y ∈ B}. Then C is convex because A,B are
convex, 0 /∈ C, and C is open (because C =

⋃
y∈B(A− y), which is a union of open sets).

By the previous lemma, there exists a linear continuous form f such that f < 0 on C.
Then f(x) < f(y) for x ∈ A and y ∈ B. If supx∈A f(x) ≤ α ≤ infy∈B f(y), then f−1(α)
separates A and B.

1.2 The complex geometric Hahn-Banach theorem

Definition 1.2. Let V be a vector space over K = R or C. We say that M ⊆ V is
balanced if λx ∈M for all x ∈M and λ ∈ K with |λ| ≤ 1.

Proposition 1.1. Let V be a normed vector space over C, and let C ⊆ V be open, convex,
nonempty, and balanced. Let x0 /∈ C. Then there exists a complex linear continuous map
f : V → C such that f(x0) 6= f(x) for all x ∈ C. In particular, the closed affine hyperplane
H = f−1(f(x0)) contains x0 and does not meet C.

Proof. Since C is balanced, 0 ∈ C. Let p be the gauge of C. Then C = {x : p(x) < 1},
and p is a seminorm; i.e. p(λx) = |λ|p(x) and p(x+y) ≤ p(x)+p(y). We can now conclude
that there is a continuous linear form f : V → C such that f(x0) = 1 and |f | ≤ p on V .
Then |f | < 1 on C, so f is continuous.

Remark 1.1. The gauge p of C (convex, open, balanced, contains 0) satisfies the following
inequality:

|p(x+ y)− p(y)| ≤ p(x) ≤M‖x‖.

So p is Lipschitz continuous on V .
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Corollary 1.1. Let V be a normed vector space over C, and let A ⊆ V be a closed, convex,
nonempty, and balanced. Let x /∈ A. We can find a continuous linear form f on V such
that infy∈A |f(y)− f(x)| > 0.

Proof. Let ε > 0 be so small that (x+B(0, ε))∩A = ∅. The set B(0, ε)+A is open, convex,
balanced, and does not contain x, so by the previous lemma, there is a continuous linear
form f such that f(x) 6= f(y) + f(z), where y ∈ A and z ∈ B(0, ε). Here, f(B(0, ε)) 6= {0}
is a balanced subset of C, so it contains a neighborhood of 0.
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